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Abstract
We analyse under which conditions the missing label problem associated with
a reduction chain s′ ⊂ s of (simple) Lie algebras can be completely solved by
means of an Inönü–Wigner contraction g naturally related to the embedding.
This provides a new interpretation of the missing label operators in terms of
the Casimir operators of the contracted algebra, and shows that the available
labelling operators are not completely equivalent. Further, the procedure is
used to obtain upper bounds for the number of invariants of affine Lie algebras
arising as contractions of semi-simple algebras.

PACS numbers: 02.20.Sv, 02.20.Qs

1. Introduction

A recurring problem in group theoretical applications to physical problems is the reduction
of irreducible representations of a Lie group into multiplets of some subgroup of internal
symmetry. Sometimes, and depending on the nature of the embedding, the subgroup does not
provide enough labels to distinguish the basis states without ambiguity. We are therefore led to
find additional operators to separate those states not properly described by the subgroup labels.
Various techniques have been developed to surmount this difficulty, such as the projection
technique of Elliott for the reduction chain su(3) ⊃ so(3) used in atomic physics, the method
of elementary multiplets in the spectroscopic chain so(7) ⊃ G2 ⊃ so(3) to describe f electron
configurations of rare earths or the construction of integrity bases in the enveloping algebras
for the Wigner supermultiplet model su(4) ⊃ su(2)×su(2), among others [1]. More recently,
K-matrix theory and the rotor expansion method have been shown to be powerful techniques
to solve the missing label problem in many important problems, like the nuclear sp(3) model
[2, 3].

A complementary analytical approach to the so-called missing label problem (MLP) was
developed in [4, 5], by means of basis functions that are common eigenstates of commuting
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operators. This point of view also allows us to recover the missing operators as subgroup
scalars in the enveloping algebra of s, as well as to compute them as solutions of a system
of partial differential equations. Although this approach has been the less used for solving
the MLP, it presents some interesting features over the pure algebraic method of enveloping
algebras. It has been observed in the literature that symmetry breaking is, to some extent,
equivalent to consider contractions of Lie algebras [6]. In this sense, the symmetry preserved
corresponds to some subalgebra which remains unchanged by the contraction. At least for the
su(3) model, this idea has been developed by means of the rotor expansion [3].

This is the point of view we adopt in this work. More specifically, we combine the
analytical method of [5] for solving the MLP with contractions of Lie algebras. We prove
that for any embedding s ⊃ s′ of (semi-simple) Lie algebras, there is an associated simple
Inönü–Wigner contraction of s onto an affine Lie algebra g = s′−→⊕ RnL1, where nL1 denotes
an n-dimensional Abelian algebra and R is a representation of the subalgebra s′ such that the
adjoint representation ad of s satisfies the condition ad(s) = ad(s′) ⊕ R. It is further proven
that any invariant of the contraction g can be formally taken as missing label operator. It
is therefore reasonable to study whether the invariants of the contraction g are sufficient in
number to provide a set of missing label operators, and therefore, to completely solve the
missing label problem. We characterize when it is possible to solve the MLP by means of
this associated contraction, and derive some useful consequences for the number of invariants
of inhomogeneous Lie algebras. One important fact arises from this method, namely, that
the missing label operators obtained inherit an intrinsic meaning as terms of invariants that
disappear during contraction, and should correspond to the natural choice of operators, since
they are internally determined by the group–subgroup chain. For the case of no missing
labels, we extract an interesting consequence, namely that the invariants of the contraction
arise as polynomial functions of the Casimir operators of the contracted Lie algebra s and the
subalgebra s′. This enables us to determine upper bounds for the number of inhomogeneous
Lie algebras that appear as contractions of semi-simple Lie algebras.

It is known from the classical theory that irreducible representations of semi-simple Lie
algebras are labelled unambiguously by the eigenvalues of Casimir operators. More generally,
it can be established that irreducible representations of a Lie algebra g are labelled using the
eigenvalues of its generalized Casimir invariants [5]. The number of internal labels needed
equals

i = 1
2 (dim g − N (g)), (1)

as first observed by Racah [7]. If we use some subalgebra h to label the basis states of g,
we obtain 1

2 (dim h + N (h) + l′ labels, where l′ is the number of invariants of g that depends
only on variables of the subalgebra h [5]. In order to separate irreducible representations of g

uniquely, it is necessary to find

n = 1
2 (dim g − N (g) − dim h − N (h)) + l′ (2)

additional operators, which are usually called missing label operators. The total number of
available operators of this kind is easily shown to be twice the number of needed labels, i.e.,
m = 2n. For n > 1, it remains the problem of determining a set of n mutually commuting
operators. The analytical approach to the missing label problem has the advantage of pointing
out its close relation to the problem of finding the invariants of the coadjoint representation of
a Lie algebra. Although, in general, the missing label operators do not constitute invariants
of the algebra or subalgebra, they can actually be determined with the same Ansatz [5, 8, 9].



Internal labelling operators and contractions of Lie algebras 14775

Given the Lie algebra g with structure tensor
{
Ck

ij

}
over a basis {X1, . . . , Xn}, we realize the

algebra in the space C∞(g∗) by means of the differential operators defined by

X̂i = Ck
ij xk

∂

∂xj

, (3)

where [Xi,Xj ] = Ck
ijXk (1 � i < j � n) and {x1, . . . , xn} is a dual basis of {X1, . . . , Xn}.

The invariants of g (in particular, the Casimir operators) are solutions of the following system
of partial differential equations:

X̂iF = 0, 1 � i � n. (4)

Whenever we have a polynomial solution of (4), the symmetrization map defined by

Sym
(
x

a1
i1

· · · xap

ip

) = 1

p!

∑
σ∈Sp

x
a1
σ(i1)

· · · xap

σ(ip) (5)

allows us to recover the Casimir operators in their usual form, i.e, as elements in the centre of
the enveloping algebra of g. A maximal set of functionally independent invariants is usually
called a fundamental basis. The number N (g) of functionally independent solutions of (4) is
obtained from the classical criteria for differential equations, and is given by

N (g) := dim g − rank
(
Ck

ij xk

)
, (6)

where A(g) := (
Ck

ij xk

)
is the matrix associated with the commutator table of g over the given

basis. If we now consider an algebra–subalgebra chain s ⊃ s′ determined by the embedding
f , in order to compute the missing label operators we have to consider the equations of (4)
corresponding to the generators of the subalgebra s′. This system, as proven in [5], has exactly
N (f (s′)) = dim s − dim s′ − l′ solutions. Using formula (2) it follows further that this scalar
can be expressed in terms of the number of invariants of the algebra–subalgebra chain:

N (f (s′)) = m + N (s) + N (s′) − l′. (7)

This shows that the differential equations corresponding to the subalgebra generators have
exactly n more solutions as needed to solve the missing label problem. We remark that the
scalar m depends essentially on the embedding f .

Since we are interested in combining the invariants with contractions, we briefly recall the
elementary notions that will be used in the following. Let g be a Lie algebra and �t ∈ End(g)

a family of non-singular linear maps, where t ∈ [1,∞) 1. For any X, Y ∈ g we define

[X, Y ]�t
:= �−1

t [�t(X),�t(Y )], (8)

which obviously represent the brackets of the Lie algebra over the transformed basis. Now
suppose that the limit

[X, Y ]∞ := lim
t→∞ �−1

t [�t(X),�t(Y )] (9)

exists for any X, Y ∈ g. Then equation (9) defines a Lie algebra g′ called the contraction
of g (by �t ), non-trivial if g and g′ are non-isomorphic, and trivial otherwise [10, 11]. A
contraction for which there exists some basis {X1, . . . , Xn} such that the contraction matrix
A� is diagonal, that is, adopts the form

(A�)ij = δij t
nj , nj ∈ Z, t > 0, (10)

1 Other authors use the parameter range (0, 1], which is equivalent to this by simply changing the parameter to
t ′ = 1/t .
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is called a generalized Inönü–Wigner contraction [11]. This is the only type of contractions
that we will need in this work. It is known (see e.g. [12]) that for a contraction g � g′ of Lie
algebras, the following inequality must be satisfied:

N (g) � N (g′). (11)

The notion of contraction can also be formulated for invariant functions [13]. The
procedure is formally valid for polynomial and non-polynomial invariants, but in this work
we will only consider Casimir operators. Suppose that the contraction is of the type (10). If
F(X1, . . . , Xn) = αi1···ipXi1 · · · Xip is a Casimir operator of degree p, then the transformed
invariant takes the form

F(�t(X1), . . . , �t (Xn)) = tni1 +···+nip αi1···ipXi1 · · · Xip . (12)

Now, defining

M = max{ni1 + · · · + nip | αi1···ip 	= 0}, (13)

the limit

F ′(X1, . . . , Xn) = lim
t→∞ t−MF(�t(X1), . . . , �t (Xn)) =

∑
ni1 +···+nip =M

αi1···ipXi1 · · · Xip (14)

gives a Casimir operator of degree p of the contraction g′. It should be remarked that, starting
from an adequate fundamental system of invariants {C1, . . . , Cp} of g, it is always possible
to obtain a set of p independent invariants of the contraction. However, it is not ensured that
these invariants are of minimal degree in the contraction [14].

2. Embedding of Lie algebras and the associated contraction

An embedding of a Lie algebra s′ into a Lie algebra s is specified by an isomorphic mapping
f : s′ −→ s. A special type of embeddings correspond to the so-called regular subalgebras,
which can be directly obtained from the Dynkin diagram of semi-simple Lie algebras [15].
Each embedding determines an embedding index jf and a branching rule for irreducible
representations of s, which depend essentially on the embedding. For simple complex Lie
algebras and maximal semi-simple subalgebras, the branching rules have been computed and
tabulated up to rank eight [16]. In particular, for the reduction chain s′ ↪→f s, the adjoint
representation of s satisfies the following decomposition:

ad s = ad s′ ⊕ R, (15)

where R is a (completely reducible) representation of s′ determined by the embedding index
jf

2.
In this paragraph, we point out that any embedding of (semi-simple) Lie algebras s′ ⊂ s

naturally induces a contraction of s onto an affine Lie algebra. To this extent, consider a basis
{X1, . . . , Xs,Xs+1, . . . , Xn} of s such that {X1, . . . , Xs} is a basis of s′, and {Xs+1, . . . , Xn}
spans the representation space of the induced R. Over this basis, the structure tensor of s can
be rewritten as follows:

[Xi,Xj ] =
s∑

k=1

Ck
ijXk, 1 � i, j, k � s, (16)

[Xi,Xj ] =
n∑

k=s+1

Ck
ijXk, 1 � i � s, s + 1 � j, k � n, (17)

2 The complete reducibility is actually ensured only if the subalgebra s′ is semi-simple.



Internal labelling operators and contractions of Lie algebras 14777

[Xi,Xj ] =
s∑

k=1

Ck
ijXk +

n∑
l=s+1

Cl
ijXl, s + 1 � i, j � n. (18)

For any t ∈ R we consider the non-singular linear transformations

�t(Xi) =
⎧⎨⎩ Xi, 1 � i � s

1

t
Xi, s + 1 � i � n

. (19)

Expressing the brackets over the transformed basis {X′
i = �t(Xi) : 1 � i � n} we obtain

[X′
i , X

′
j ] =

s∑
k=1

Ck
ijX

′
k, 1 � i, j, k � s, (20)

[X′
i , X

′
j ] =

n∑
k=s+1

Ck
ijX

′
k, 1 � i � s, s + 1 � j, k � n, (21)

[X′
i , X

′
j ] =

s∑
k=1

1

t2
Ck

ijX
′
k +

n∑
l=s+1

1

t
Cl

ijX
′
l , s + 1 � i, j � n. (22)

It follows at once that the subalgebra s′ remains invariant, as well as the representation of s′

over its complementary in s. These equations also show that the limit

lim
t→∞ �−1

t [�t(X),�t(Y )]

exists for any pair of generators X, Y ∈ s, we thus obtain a non-trivial contraction3 of s

denoted by g and with non-vanishing brackets

[X′
i , X

′
j ] =

s∑
k=1

Ck
ijX

′
k, 1 � i, j, k � s, (23)

[X′
i , X

′
j ] =

n∑
k=s+1

Ck
ijX

′
k, 1 � i � s, s + 1 � j, k � n. (24)

We observe that if s′ is semi-simple, then it coincides with the Levi subalgebra of g, and the
Levi decomposition of this contraction equals

g = s′−→⊕ R(n − s)L1,

where (n − s)L1 denotes the Abelian algebra of dimension n − s. This Lie algebra is affine,
and by the contraction we know that N (g) � N (s). Applying the analytical method, the
invariants of g are obtained from the solutions of the system:

X̂iF = Ck
ij xk

∂F

∂xj

= 0, 1 � i � s, (25)

X̂s+iF = Cs+k
s+i,j xs+k

∂F

∂xj

= 0, 1 � i, k � n − s, 1 � j � s. (26)

Now equation (25) reproduces the subsystem of (4) corresponding to the generators of the
embedded subalgebra s′ that must be solved in order to find the missing label operators for

3 This is in fact a simple Inönü–Wigner contraction, following the notation of [11].
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the reduction chain s′ ⊂ s. This means in particular that any invariant of the contraction g is a
solution to that system, thus can be taken as candidate for missing label operator, whenever it
is functionally independent from the invariants of s and s′. As a consequence, we obtain that
N (f (s′)) � N (g). Combining this inequality with formula (7), we conclude that

N (f (s)) = m + N (s) + N (s′) − l′ � N (g) � N (s). (27)

The term N (f (s)) on the left-hand side gives the total number of available labelling operators,
the invariants of s and s′ comprised, as shown in [5]. Therefore, if the contraction g has enough
invariants, we can extract a set of n commuting missing label operators and solve the missing
label problem completely. The most important case in physical applications corresponds
to reductions chains of the type s ⊃ s′, where s is semi-simple and s′ is a reductive Lie
algebra. Although the contraction method remains completely valid for reductions involving
non-reductive algebra–subalgebra chains, in the following we will restrict ourselves to the
case of reductive subalgebras, for being the most representative case in Physics.

Suppose therefore that s is of rank p, s′ is a reductive subalgebra and let g = s′−→⊕ R(dim s−
dim s′)kL1 denote the contraction associated with the chain s ⊃ s′. Let {C1, . . . , Cp} be the
Casimir operators of s, and {D1, . . . , Dq} the invariants of s′. Contracting the invariants Ci

or some appropriate combination of them, we can always obtain p independent invariants of
g. Completing if necessary to a maximal set of invariants of g, we obtain the fundamental
system {C ′

1, . . . , C
′
p, . . . , C ′

r}(r � p). In order to solve the missing label problem using the
latter set of functions, the system F = {C ′

1, . . . , C
′
r} must contain at least n functions that are

independent on the Casimir invariants of s and s′, i.e.,

rankF(mod{C1, . . . , Cp,D1, . . . , Dq}) � n. (28)

By the construction, the set {C1, . . . , Cp,D1, . . . , Dq−l′ } is functionally independent. Now
the question arises whether adding the invariants of g some dependence relations appear. In
general, and whenever no invariant is preserved by the contraction, the functions Ci and C ′

i

are independent. In this case, a dependence relation means that some Ci is a function of C ′
i

and the invariants of s′. We observe that such a dependence relation appears at least for the
quadratic Casimir operator C1

4. Indeed, writing C1 over the transformed basis (19) we obtain
the following decomposition of C1 as polynomial in the contraction variable t:

C1 = F + t2C ′
1,

where F is a quadratic invariant of s′. This decomposition follows from the well-known fact
that, over the given basis, the quadratic Casimir operator of a reductive subalgebra is always
a summand of the quadratic Casimir operator of s 5. As a consequence, we obtain the upper
bound

rank{C1, . . . , Cp, C ′
1, . . . , C

′
r , D1, . . . , Dq} < N (g) + N (s) + N (s′) − l′. (29)

Combining the lower and upper bounds (28) and (29), respectively, we obtain a necessary
numerical condition on the number of invariants of the contraction g:

n < N (g). (30)

These facts, put together, allow us to characterize when the contraction g provides enough
labelling operators to solve the missing label problem for s ⊃ s′.

Theorem 1. A necessary and sufficient condition for solving the missing label problem for the
reduction s ⊃ s′ by means of the invariants of the associated contraction s � g = s is that
the affine Lie algebra g satisfies the constraints

4 Is either s or s′ is not reductive, this is not applicable, since the existence of quadratic operators is not ensured.
5 For higher order invariants, dependence relations could also appear, depending on the homogeneity degree of the
invariants of s with respect to the generators of the subalgebra.
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(i) N (g) � n + 1,
(ii) there are at least n invariants of g that are functionally independent from the invariants

of s and s′.

The first condition, the easiest to evaluate, provides a numerical criterion to decide whether
the missing labels can be found by means of the affine algebra g. Unfortunately, there is no
general criterion to decide automatically whether and how many of the contracted invariants
are independent on the Casimir operators of s and s′. We can however derive the following
sufficient condition.

Corollary 1. If the contraction g satisfies the numerical condition N (g) � {n + 1,N (s) +
N (s′) + 1 − l′}, then it solves the MLP.

The use of the contraction naturally associated with an embedding has further applications,
which can be useful for a general study of affine Lie algebras, in particular inhomogeneous
algebras [17–19]. Let s′ ↪→f1 s be an embedding and s � g = s′−→⊕ RkL1 the associated
contraction. Since the subalgebra s′ remains invariant by the contraction, we naturally obtain
the embedding f2 : s′ → g. If we now consider the missing label problem for the latter
embedding6, we immediately see that the system of PDEs to be solved is exactly the same as
for the embedding f1. This means that the solutions coincide, and, in particular, their number.
This implies that N (f1(s

′)) = N (f2(s
′)). Recall that for each embedding the number of

independent solutions is given by

N (f1(s
′)) = dim s − dim s′ + l′,

N (f2(s
′)) = dim g − dim s′ + l′1,

(31)

where l′1 denotes the number of common invariants of s′ and g. Since contractions preserve
the dimension, we conclude from formula (31) that l′ = l′1, that is, the subalgebra s′ has the
same number of common invariants with s than with the contraction g. On the other hand,
using the reformulation (7)

N (f1(s
′)) = m + N (s) + N (s′) − l′

N (f2(s
′)) = m̃ + N (g) + N (s′) − l′1,

(32)

we deduce that

m − m̃ = N (g) − N (s) � 0. (33)

This result tells us that the number of available labelling operators for the reduction chain
s ⊃ s′ is always higher than that of the chain g ⊃ s′. Even more, the inequality (27) gives us
a criterion to compute the number of invariants of contractions in dependence of the available
missing label operators with respect to an invariant subalgebra.

Proposition 1. Let s � g be a contraction such that the subalgebra s′ is (maximal) invariant.
Then following equality holds

N (g) = N (s) + m − m̃,

where m and m̃ are the number of available missing label operators for the algebra subalgebra
chain s ⊃ s′ and g ⊃ s′, respectively.

This result has useful applications, like the determination of the number of invariants of
some inhomogeneous Lie algebras. As a particular case, we obtain the following upper bound:

N (g) � N (s) + m. (34)

6 Actually the mappings f1 and f2 are the same, but we distinguish the target algebra by the indices.
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This bound has an important interpretation, namely, that the number of invariants of a
contraction is, in some sense, determined by the number of available missing label operators
for the missing label problem with respect to a maximal subalgebra of s that remains invariant
by the contraction. This fact establishes a quite strong restriction to semi-direct products of
semi-simple and Abelian Lie algebras to appear as contractions of semi-simple Lie algebras
[20].

3. The case n = m = 0

In the case of zero missing labels, the invariants of the algebra–subalgebra chain provide
a complete description of the states. This situation is not uncommon for certain canonical
embeddings, such as the inclusions so(N) ⊂ so(N + 1) of (pseudo)-orthogonal Lie algebras.
Even if this case is trivial, its interpretation in terms of the associated contraction provides
some interesting information concerning the invariants of the contraction.

At first, if m = 0, then by formula (33) we have N (g) = N (s), i.e., the contraction
determined by the embedding s ⊃ s′ preserves the number of invariants. It is worth to be
observed that the converse does not necessarily hold. Moreover, by formula (2), we have

0 = m = dim s − dim s′ − N (s) − N (s′) + 2l′. (35)

In the absence of additional internal labels, the system X̂iF = 0 for the generators of s′ has
exactly

N (f (s)) = N (s) + N (s′) − l′ (36)

solutions. Since any invariant of the contraction g = s′−→⊕ R(dim s − dim s′)L1 is a special
solution of this system, the latter equation tells that any invariant of g is functionally dependent
on the invariants of s and the subalgebra s′. That is, the Casimir invariants of the algebra–
subalgebra chain completely determine the invariants of the contraction7. Expressed in another
way, in this situation, polynomial functions of the invariants of s and the contraction g allow
us to recover naturally the invariants of the subalgebra.

These observations provide a new (and very short) proof of the fact that the number of
invariants for inhomogeneous pseudo-orthogonal Lie algebras is given by

N (Iso(p, q)) =
[
p + q + 1

2

]
. (37)

In fact, it is straightforward to verify that n = 0, and since Iso(p, q) is a contraction of
so(p + 1, q), the result follows at once from formula (34). Moreover, the invariants of
Iso(p, q)) can be obtained from the invariants of so(p + 1, q) and so(p, q). This explains in
some manner why the classical Gel’fand method applies so well to inhomogeneous algebras
of this kind [19].

As an example, consider the embedding so(3, 1) ↪→ so(4, 1) of the Lorentz algebra
into the Anti De Sitter algebra so(4, 1). Using the kinematical basis {Jα, Pα,Kα,H }1�α�3,
where Jα are spatial rotations, Pα are spatial translations, Kα are the boosts and H is the time
translation, the non-trivial brackets of so(4, 1) are

[Jα, Jβ ] = εαβγ Jγ , [Jα, Pβ ] = εαβγ Pγ ,

[Jα,Kβ] = εαβγ Kγ , [H,Pα] = εαβγ Kα,

[H,Kα] = εαβγ Pα, [Pα, Pβ ] = εαβγ Jγ ,

[Kα,Kβ] = −εαβγ Jγ , [Pα,Kα] = H.

(38)

7 Of course, if N (s′) = 0, this assertion fails, but for reductive subalgebras this situation is excluded.
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It follows at once that so(3, 1) is generated by the rotations and boosts. In this case there are
no missing labels, thus n = m = 0. The corresponding contraction defined by the linear maps

J ′
α = Jα, P ′

α = 1

t
Pα, K ′

α = Kα, H ′ = 1

t
H

leads to the Poincaré algebra Iso(3, 1). Over this basis, the Casimir operators of so(4, 1) are

C2 = jαjα + pαpα − kαkα − h2

C4 = jαjαh2 + (pαpα)(kαkα) − (pαkα)2 + (pαjα)2 − (jαkα)2 − 2εαβγ jαpβkγ h.

Contraction of these invariants give the Casimir operators of the Poincaré algebra

C ′
2 = pαpα − h2

C ′
4 = jαjαh2 + (pαpα)(kαkα) − (pαkα)2 + (pαjα)2 − 2εαβγ jαpβkγ h.

Now observe that C21 = pαpα −kαkα and C22 = jak
α are the Casimir operators of the so(3, 1)

subalgebra. It follows that

C2 = C ′
2 + C21, C4 = C ′

4 − C2
22,

i.e., the mass-squared and spin-squared operators of the Poincaré algebra are obtainable as a
difference of the Casimir operators of the Lorentz and De Sitter Lie algebras, and therefore
the information they provide is already contained in the reduction chain.

4. The case n = 1, m = 2

In the case of one missing label operator, any solution of the contraction g that is independent
of the invariants of the algebra–subalgebra chain can be used. No commutation problems arise
at this step. Formula (34) establishes the maximal possible number for the invariants of g:

N (g) � N (s) + 2.

For the case of semi-simple Lie algebra s and maximal reductive subalgebra s′, there are eight
cases with one missing label [5, 21]. Most of these chains have been solved finding finite
integrity bases, that is, a set of elementary subgroup scalar such that any other can be expressed
as a polynomial in them. All eight cases can also be solved applying the contraction method.
In order to illustrate how the contraction method works, we consider two representative cases,
and resume the results for the remaining cases in table 1.

4.1. The su(3) ⊃ so(3) reduction

This reduction chain, first considered in atomic physics by Elliott, is probably the best known
and best studied case concerning the missing label problem. A complete set of commuting
operators and their eigenvalues for different irreducible representations of su(3) were first
determined in [22].

The so(3) subalgebra is naturally identified with the three orbital angular momentum
operators, while the remaining five generators transform under rotations like the elements of
a second rank tensor [1, 3]. Here we consider a basis {Li, Tjk} formed by rotations Li and the
operators Tik and commutation relations

[Lj , Lk] = iεjklLl, [Lj , Tkl] = iεjkmTlm + iεjlmTkm,

[Tjk, Tlm] = i

4

{
δl
j εkmn + δm

j εk ln + δl
kεjmn + δm

k εj ln
}
Ln,

where T33 + (T11 + T22) = 0. The symmetrized Casimir operators, following the notation of
[22], are given by C(2) = LiLi + 2TikTik, C

(3) = LiTikLk − 4
3TikTklTli and C(2,0) = LiLi .
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The contraction g associated with this reduction has Levi decomposition g = so(3)
−→⊕ RI

5
5L1,

where RI
5 denotes the five-dimensional irreducible representation of so(3). This is equivalent

to the rotor algebra [R5]SO(3) studied in [2]. It is straightforward to verify that N (g) = 2.
Therefore, a basis of invariants of g can be obtained by contraction of C(2) and C(3).
Specifically, we get the (unsymmetrized) Casimir invariants

C2 = 2tikt
ik, C3 = tikt

kl tli .

As already observed, C2 is functionally dependent on C(2) and C(2,0), therefore of no use for
the MLP. The independence of {C(2), C(3), C(2,0), C3} follows from the Jacobian

∂{C(2), C(3), C(2,0), C3}
∂{l2, l3, t11, t12} 	= 0.

The invariant C3 is therefore sufficient to solve the missing label problem. In fact, we can
recover the missing label operator X(3) from [22] by simply considering the linear combination

X(3) = C(3) + 4
3 {C3}symmetrized.

This operator is equivalent to the third-order operator obtained by Bargmann and Moshinsky
in [23], and also to the operator determined in [2] using the K-matrix approach. It is observed
that the fourth-order operator X(4) = LiTijTjkLk cannot be obtained from the invariants of
su(3), so(3) and the contraction g. This is essentially due to the fact that the fundamental
Casimir operators of su(3) have degrees 2 and 3.

4.2. The seniority model

The reduction so(5) ⊃ su(2)×u(1) has been used in the treatment of the paring force between
particles in the same nuclear shell, and is usually referred to as the seniority model [24].

In order to analyse this chain, we use the same basis {U±, U3, V3, V±, S±, T±} of [25].
The su(2)×u(1) subalgebra is generated by the operators {U±, U3, V3}. The nonzero brackets
are given by

[U±, U3] = ∓U±, [U+, U−] = 2U3,

[U±, V±] = ∓2S±, [U±, V∓] = ∓2T±,

[U±, S∓] = ±V∓, [U±, T∓] = ±V∓,

[U3, S±] = ±S±, [U3, T±] = ±T±,

[V3, S±] = ±S±, [V3, T±] = ∓T±,

[V+, V−] = 2V3, [V±, V3] = ∓V±,

[V±, S∓] = ∓U∓, [V±, T±] = ±U±,

[S+, S−] = U3 + V3, [T+, T−] = U3 − V3.

Over this basis, the (unsymmetrized) Casimir operators of so(5) can be chosen as

C2 = u+u− + u2
3 + v2

3 + v+v− + 2(s+s− + t+t−),

C4 = (
u+u− + u2

3

)
v2

3 + u+u−(s+s− + t+t−) + u2
+s−t− + u2

−s+t+ + 2u3v3(s+s− − t+t−)

+ ((t−v− − s−v+)u+ + (t+v+ − s+v−)u−)v3 + ((t+v+ + s+v−)u− + (s−v+ + t−v−)u+)u3

+ v+v−s+s− + u2
3v+v− + (s+s− − t+t−)2 − v2

+s−t+ − v2
−s+t− + v+v−t+t−,

while those of the subalgebra are given by C21 = u+u− + u2
3, C22 = v3. The associated

contraction g is easily seen to have exactly two invariants, which can be obtained from those
of so(5) by the contraction method:

C ′
2 = v+v− + 2(s+s− + t+t−),

C ′
4 = v+v−s+s− + (s+s− − t+t−)2 − v2

+s−t+ − v2
−s+t− + v+v−t+t−.
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Table 1. Comparison of missing labels of [5] and those obtained by contraction.

s ⊃ s′ N (g) N (f (s′)) rank F Order of � Operator of [5]

su(3) ⊃ so(3) 2 5 4 3 X(3)a

so(5) ⊃ su(2) × u(1) 2 6 5 4 UV L2

G2 ⊃ su(3) 2 5 4 6 U3V 3

sp(6) ⊃ sp(4) × su(2) 3 8 7 6 Q3T 2L

so(7) ⊃ G2 3 7 6 6 T 4S2

su(4) ⊃ [su(2)]2 × u(1) 3 7 6 4 UV ST

su(3) × su(3) ⊃ su(3) 2 8 7 3 UV 2

[su(2)]3 ⊃ su(2) 3 6 5 2 −b

a The notation for the operator corresponds to that used in [22].
b This case, omitted in [5], was first considered in [21].

As expected, we have C2 = C ′
2 + C21 + C2

22, thus at most C ′
4 is independent on the invariants

of so(5) and su(2) × u(1). A short computation shows that

rank{C2, C4, C21, C22, C
′
4} = 5,

showing that the missing label problem can be solved using the contraction g. Now, after
some manipulation we can arrive at the expression 
4 = C4 − C ′

4 − C21C
2
22 explicitly given

by


4 = u+u−(s+s− + t+t−) + u2
3v+v− + u2

+s−t− + u2
−s+t+ + 2u3v3(s+s− − t+t−)

+ ((t−v− − s−v+)u+ + (t+v+ − s+v−)u−)v3 + ((t+v+ + s+v−)u− + (s−v+ + t−v−)u+)u3.

This operator is obviously independent on the invariants of the orthogonal algebra and
the subalgebra, and can therefore be taken as the missing operator. It can be verified that

4, after symmetrization, coincides with the fourth-order operator UV L2 found in [5]. The
remaining third-order operator cannot be obtained using the contraction g. In this case, this
is a consequence of the non-existence of cubic Casimir operators for the orthogonal algebra
so(5).

5. The case n = 2, m = 4

The case with two missing labels is notably more complicated, because in addition to determine
two missing label operators, these must commute. Although a considerable number of cases
has been studied, only for a few the most general form of missing label operators has been
analysed in detail, such as the Wigner supermultiplet su(4) ⊃ su(2) × su(2) [26, 27] or the
chain so(5) ⊃ su(2) used for the classification of nuclear surfon states [24].

5.1. The supermultiplet model

This model, used by Wigner to describe light nuclei, has been considered in detail by various
authors, usually by means of enveloping algebras [26–28]. It has been shown that the set of
available operators is partitioned into two separate sets, the Moshinky–Nagel operators 
,�

and two other operators O1,O2, first found in [26] and later evaluated numerically in [27].
We start from the same basis {Si, Tj ,Qαβ} used in [28], where 1 � i, j, α, β � 3. The
non-vanishing brackets of su(4) are

[Si, Sj ] = iεijkSk, [Ti, Tj ] = iεijkTk,

[Si,Qjα] = iεijkQkα, [Tα,Qiβ ] = iεαβγ Qiγ , (39)

[Qiα,Qjβ] = i

4
{δαβεijkSk + δij εαβγ Tγ },
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where εijk is the completely antisymmetric tensor. The su(2) × su(2) subalgebra is generated
by the operators {Si, Tj }. It follows easily from the brackets that the generators of su(4)

decompose as the following su(2) × su(2) representation:

R = (D1 ⊗ D0) ⊕ (D0 ⊗ D1) ⊕ (D1 ⊗ D1), (40)

where D1 denotes the adjoint representation of su(2) and D0 the trivial representation. The
two missing label operators are therefore determined by the system of differential equations

ŜiF = εijksk

∂F

∂sj

+ εijkqkl

∂F

∂qkl

= 0,

T̂αF = εαβγ tγ
∂F

∂tβ
+ εβγµqαµ

∂F

∂qβµ

= 0, i = 1, 2, 3
(41)

corresponding to the generators of the subalgebra. From the nine independent solutions, five
of them correspond to invariants of su(4) and the subalgebra. The Casimir operators can be
taken as

C2 = sαsα + tβ tβ + 4qαβqαβ, (42)

C3 = sαtβqαβ − 4εijkεαβγ qiαqjβqkγ , (43)

C4 = 16

{
ε2
αβγ

(
q2

αβ

(
q2

αγ + q2
γβ

)
+ 2q2

αα

(
q2

αγ + q2
βα

) − 2qααqαβqγαqγβ + 3q2
αβ

(
q2

γα + q2
γ γ

))
+

∑
a<β

(
3
(
q2

ααq2
ββ + q2

αβq2
βα

) − 2qααqββqαβqβα

)
+ q4

αβ

}
+ (sαsα)2 + (tβ tβ)2 + 3sαsαtβ tβ

+ 23q2
αβ(sαsα + tβ tβ) + 4{tαtβqγαqγβ + sαsβqαγ qβγ − εαβγ εµνρsµtαqνβqργ } (44)

for su(4), and C21 = sαsα, C22 = tβ tβ for the subalgebra. In this case, the contraction
g = (su(2) × su(2))

−→⊕ D1⊗D1 9L1 associated with the embedding has the following non-trivial
brackets:

[Si, Sj ] = iεijkSk, [Ti, Tj ] = iεijkTk,

[Si,Qjα] = iεijkQkα, [Tα,Qiβ ] = iεαβγ Qiγ .
(45)

Using formula (6) we easily get N (g) = 3. Contracting the invariants we obtain three
independent invariants of g, given respectively by

C ′
2 = 4qαβqαβ, (46)

C ′
3 = −4εijkεαβγ qiαqjβqkγ , (47)

C ′
4 = 16

⎧⎨⎩ε2
αβγ

(
q2

αβ

(
q2

αγ + q2
γβ

)
+ 2q2

αα

(
q2

αγ + q2
βα

) − 2qααqαβqγαqγβ + 3q2
αβ

(
q2

γα + q2
γ γ

))

+ q4
αβ +

∑
a<β

(
3
(
q2

ααq2
ββ + q2

αβq2
βα

) − 2qααqββqαβqβα

)⎫⎬⎭ . (48)

As observed, the quadratic Casimir operator of g satisfies the condition C2 − C ′
2 =

C21 + C22, and is therefore dependent. To prove that F = {C2, C3, C4, C21, C22, C
′
3, C

′
4}

is a functionally independent set, we consider the Jacobian with respect to the variables
{s2, s3, t1, t2, q11, q12, q23} :
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Table 2. so(5) brackets in a so(3) = {L0, L±1} basis.

[] Q3 Q2 Q1 Q0 Q−1 Q−2 Q−3

L0 3Q3 2Q2 Q1 0 −Q−1 −2Q−2 −3Q−3

L1 0 6Q3 Q2 2Q1 6Q0 10Q−1 Q−2

L−1 Q2 10Q1 6Q0 2Q−1 Q−2 6Q−3 0
Q3 0 0 0 Q3 Q2 10Q1 + 15L1 5Q0 − 15L0

Q2 0 −6Q3 −Q2 −15L1 30Q0 + 60L0 10Q−1 − 15L−1

Q1 0 3L1 − Q1 −3L0 − 3Q0 15L−1 Q−2

Q0 0 −Q−1 − 3L−1 −Q−2 Q−3

Q−1 0 −6Q−3 0
Q−2 0 0

∂(C21, C2, C3, C4, C
′
2, C

′
3, C

′
4)

∂(s2, s3, t1, t2, q11, q12, q23)
	= 0. (49)

Actually, this is a maximal set of independent functions among the invariants of the intervening
Lie algebras su(4), su(2) × su(2) and g. This means that the contraction method provides at
most two of the four available operators. If we take the difference of the cubic invariants of
su(4) and g, we recover exactly the cubic operator 
 of Moshinsky and Nagel [28]:

C3 − C ′
3 = 
 = sαtβqαβ. (50)

As known, the operator 
 only commutes with the fourth-order operator � defined by

� = SiSjQiαQjα + QiαQiβTαTβ − εijkεαβγ SiTαQjβQkγ . (51)

With some more effort we can express � with the help of the preceding functions of F ,
obtaining

� = 1
4

{
C4 − C ′

4 + C2
21 − C2

2 + C ′2
2 − C21(C

′
2 − C2)

}
. (52)

This means that the commuting 
 − � operators of Moshinky–Nagel are completely
determined by the contraction associated with the embedding of spin–isospin subalgebra
in su(4), while the other pair of commuting operators, being summands of �, cannot be
obtained by this method.

5.2. The nuclear surfon model

The reduction chain so(5) ⊃ su(2) has been analysed in [29], where two commuting missing
label operators of degrees 4 and 6 were found. The authors looked for the simplest possible
operators solving the labelling problem. We reconsider the problem with the contraction
method. As in [29], we choose the basis of so(5) to consist of generators {L0, L1, L−1}
with brackets [L0, L±1] = ±L±1, [L1, L−1] = 2L0 together with an irreducible tensor
representation Qµ(µ = −3, . . . , 3). The brackets of so(5) over this basis are given in
table 2. According to [29], the Casimir operators of so(3) and so(5) are given, respectively,
by

C21 = l2
0 + l1l−1,

C2 = l2
0 + l1l−1 − 2

5
(q3q−3 + q1q−1) +

1

15
q2q2 + q2

0 ,

C4 = l3
0q0 +

1

6

(
l−1q1 − l1q−1 +

1

2
l1l−1

)
q2

0 +
1

6

(
q3q−1q−2 + q2q1q−3 +

1

3
q2

1q−2 +
1

3
q2q

2
−1

)
q0

− 1

3

(
1

3
l−1q−1 +

1

2
l0q−2 +

2

3
l1q−3

)
q2

1 +
1

3

(
2

3
l−1q3 +

1

3
l1q1 − 1

2
l0q2

)
q2

−1
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+
1

4

(
l3
1q−3 − l3

−1q3
) 1

3

(
1

20
q2q−2 − q1q−1 − 3l−1q1 +

7

4
q2

0 + 3l1q−1 +
1

5
q3q−3

)
l2
0

− 3

100
q2

3q2
−3 − q−2q2

540

(
q1q−1 + 36q2

0

)
+

1

12

(
q2

−1 −3l−1q−1 + 3l0q−2 +q1q−3 −q0q−2
)
l2
1

+
1

12

(
3l0q2 + q3q−1 + q2

1 + 3l1q1 − q2q0
)
l2
−1

+
1

3

(
−11

20
l1l−1 + l−1q1 − 3

2
l0q0 − l1q−1

)
q−3q3

+
1

6

(
1

10
l1l−1 − q−2q2

6
l1q−1 +

2

3
l0q0 +

1

6
l−1q1

)
− 1

12

(
l1l−1 − 34

3
l0q0

)
q−1q1 +

1

4

(
l1q2q−3 − 1

9
l−1q2q−1 +

1

9
l1q1q−2 − l−1q3q−2

)
q0

+
q2

2q2
−2

675
− 1

6
(9l1l−1 + l−1q1 − l1q−1) l0q0

+
1

12
((q2q−3 − q1q−2)l1l0 + (−q3q−2 + q2q−1)l−1l0) − l0q

3
0 +

1

18
l0q2q1q−3

− 1

36

(
q2

2q−1q−3 − l1q3q
2
−2 + q3q1q

2
−2 + l−1q

2
2q−3

) − 1

9

(
q3

1q−3 + q3q
3
−1

) − 5

108
q2

1q2
−1

+
1

5

(
7

6
q1q−1 − 3q2

0 +
1

20
q2q−2

)
q−3q3 +

1

18
l0q3q−1q−2.

For this algebra, the transformations (19) defining the contraction g are given by
L′

i = Li,Q
′
µ = 1

t
Qµ. The resulting algebra has an Abelian radical of dimension seven, which

implies that the invariants will only depend on the qµ-variables [12]. It is straightforward to
verify that N (g) = 4, and from the four Casimir operators, two can be obtained by contracting
the invariants C2 and C4 of so(5). A basis of invariants of g is completed with two operators
C ′

6 and C ′
8 of degrees 6 and 8, respectively. Omitting C8 because of its length, the explicit

form of the invariants C ′
2, C

′
4 and C ′

6 is as follows:

C ′
2 = −2

5
(q3q−3 + q1q−1) +

1

15
q2q2 + q2

0 ,

C ′
4 = 1

6

(
q3q−1q−2 + q2q1q−3 +

1

3
q2

1q−2 +
1

3
q2q

2
−1

)
q0 − 1

540

(
q1q−1 + 36q2

0

)
q−2q2

− 1

36

(
q2

2q−1q−3 + q3q1q
2
−2

) − 1

9

(
q3

1q−3 + q3q
3
−1

)
+

1

5

(
7

6
q1q−1 − 3q2

0 +
1

20
q2q−2

)
q−3q3 +

q2
2q2

−2

675
− 5

108
q2

1q2
−1 − 3

100
q2

3q2
−3,

C ′
6 = −729q6

0 − 54q4
1q2

−2 + 54q3q−3
(
9q2q

2
0q−2 + 162q1q

2
0q−1 − 32q2

1q2
−1 + 6q2q1q−1q−2

)
+ 6q2q−2

(
6q3q

3
−1 − 10q2

1q2
−1 + 6q−3q

3
1 − 63q1q

2
0q−1

) − 162q2
0

(
q2

−2q3q1 + q2
2q−3q−1

)
+ 54

(
q2

0

(
27q2

3q2
−3 − 8q−3q

3
1 − 8q3q

3
−1 − 13q2

1q2
−1

) − q2
3

( − q0q
3
−2 + q2

−1q
2
−2

)
− (

q2
1q2

−3 + q4
−1

)
q2

2

)
+ 972

(
q3

0 (q3q−1q−2 + q2q1q−3) − (
q2

3q−1q−2q−3

+
(
q2q

2
−1q−3 + q2q1q

2
−3 + q2

1q−2q−3
)
q3

)
q0

)
+ 288q−1q1

(
q−3q

3
1 + q3q

3
−1

)
+ 90q−2q2

(
q2

1q−2 + q2q
2
−1

)
q0 + 396q−1q0q1

(
q2

1q−2 + q2q
2
−1

)
+ 180q1q−1

(
q2

−2q3q1 + q2
2q−3q−1

)
+ 864q−3q3

(
q−3q

3
1 + q3q

3
−1

)
+ q3

2q3
−2

− 64q3
1q3

−1 + q3
2q0q

2
−3 − 324q3

0

(
q2

1q−2 + q2q
2
−1

) − 18q−2q2
(
q2

−2q3q1 + q2
2q−3q−1

)



Internal labelling operators and contractions of Lie algebras 14787

− 756q0q1q−1 (q3q−1q−2 + q2q1q−3)

+ 243(6q1q−1 − 30q3q−3 + q2q−2)q
4
0 − 3q2

2q2
−2

(
4q1q−1 + 9q2

0

)
.

By inspection, we easily see that C2−C ′
2 = C21, therefore the set {C2, C4, C21, C

′
2, C

′
4, C

′
6}

has at most rank five. Computing the Jacobian with respect to the variables {q−3, q0, q1, l1, l0},
we prove that the rank is indeed five. We can therefore solve the missing label problem. From
the preceding functions we deduce that a missing label operator is at least of order 4, thus
reconfirming the observation on the minimal degree of such an operator made in [29]. This
fourth-order operator can be taken for example as �1 = C4 − C ′

4 + 7
12C21(C21 − C2). We

point out that this choice does not coincide with that made in [29], where the simplest possible
fourth-order operator was considered. A sixth degree missing label operator that commutes
with �1 can be taken as �2 = C ′

6 −13608C4(C2 −C21)+ 729
(
C2

2 − C3
21

)
+ 2187

(
C2

2 − C2
21

)
.

6. On the validity of the method

The contraction method can constitute a practical procedure to reduce to some extent the
computations when we consider reduction chains s ⊃ s′ with more than three missing labels,
whenever the conditions of theorem 1 are satisfied. For example, a solution for the general
chains sp(2N) ⊃ sp(2N − 2) × u(1) or sp(2N) ⊃ sp(2N − 2) × su(2), considered for the
first time in [30], can be found by analysing the corresponding contractions.

As has been pointed out when deriving formula (30), the contraction method could fail
if the contraction g has ‘too few’ invariants with respect to the number of necessary labelling
operators. Actually, this can happen for reductive s′ and semi-simple s if the following
numerical equality N (s) = N (g) = n holds. Since in this case a fundamental system of
invariants of the contraction g can be obtained by appropriate contraction of the Casimir
operators of s, the dependence of the quadratic Casimir operator implies that we get at most
n − 1 of the needed labelling operators. The remaining operator, which must be computed
explicitly, may however be determined in some sense by the other operators, by means of
the commutation property it must satisfy. Although for this extreme case we do not obtain a
complete set by the contraction, it could also happen that any degeneracy of practical interest
can be resolved using only the n − 1 operators associated with the contraction. This however
requires a case-by-case inspection.

The lowest dimensional reduction where the contraction produces an insufficient number
of labelling operators is the reduction G2 ⊃ su(2) × su(2), where G2 is the exceptional
Lie algebra of rank two. In this case, we have n = 2 missing labels, therefore four
available operators. In [31], a pair of commuting operators of order 6 that solves the missing
label problem was found. The general form of commuting operators remains however an
unanswered question. Observe that here, N (G2) = N ([su(2)]2) = 2 holds. In this case,
the G2 generators decompose as those of the subalgebra and an eight-dimensional irreducible
representation R of su(2) × su(2), therefore the contraction has the Levi decomposition
g = (su(2) × su(2))

−→⊕ R8L1. This algebra satisfies N (g) = 2. This means that the invariants
C ′

2 and C ′
6 of the contraction algebra are obtained by limiting procedure from the quadratic

and hexic Casimir operators of G2. Now the quadratic operator is dependent on the operators
of the same degree of G2 and the subalgebra. A routinary but cumbersome computation
shows that the function C ′

6 is independent on the invariants of the algebra–subalgebra chain.
Therefore, we arrive at a missing label operator � of degree 6, but a second independent
operator cannot be constructed, because there is no other independent higher order invariant in
the contraction. Taking into account the construction made in [31], this second operator must
be either of degrees 6 or 8. Since both G2 and g have at most one (independent) invariant of
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order higher than 2, the failure of the contraction seems to be directly related to the order of
the required labelling operators.

7. Conclusions

We have shown that many physically relevant missing label problems can be completely solved
by using the properties of the reduction chain s ⊃ s′, by means of a Lie algebra contraction
associated with this reduction. Analysing the set of invariants of the three involved Lie
algebras, suitable commuting operators can be found that solve the missing label problem.
In this approach, the found operators inherit an intrinsic meaning, namely as those terms
of the Casimir operators of s that get lost during contraction, up to some combination of
lower order invariants of s and s′. We have recomputed some classical reductions appearing in
atomic and nuclear physics, obtaining complete agreement with the result obtained by different
authors and techniques. Further, we have furnished a natural explanation of the order of these
operators, which are directly related to the order of the Casimir operators of the contracted
Lie algebra. For the special case of n = m = 0, we have obtained a direct relation among the
invariants of s and s′ with those of the contraction g, which provides a new interpretation of
the contracted invariants.

It seems natural that, whenever the reduction chain is non-canonical and the reduction is
not multiplicity free, the information lost is somehow determined by the chain itself, and not
by a priori external techniques. In this sense, the missing label operators which arise from the
contraction g should correspond to the natural choice of physical labelling operators, as they
are obtained using only the available information on the algebra–subalgebra chain and their
invariants. This suggests that these could be the correct physical operators to be considered
for the labelling of states. An argument supporting this interpretation is the equivalence of
the contraction procedure with the K-matrix method in the su(3) ⊃ so(3) chain or the Wigner
supermultiplet model. Whether the remaining possibilities that arise from the general algebraic
solution of the missing label problem are physically more relevant than those operators found
by contraction, remains a question that should be analysed for any specific physical situation.
All examples also also that the affine contraction provides at most n of the 2n available
operators, thus induces a kind of partition in the set of labelling operators. This suggests the
existence of a certain kind of hierarchy among these operators, as well as the fact that some
of them are not directly related to the properties of the embedding of the subalgebra, and
therefore not equivalent to these. The next natural step is to analyse if the contraction g can
also be used to derive the eigenvalues of the missing label operators.

The failure of the proposed method for the special case N (g) = N (s) = n is essentially a
consequence of the existence of the quadratic Casimir operators for reductive Lie algebras. In
this situation, a similar obstruction to obtain the sufficient number of labelling operators will
appear whenever the Lie algebra s, the subalgebra s′ and the contraction g have all a Casimir
operator of the same degree. In this case, the invariant of the contraction will be dependent, we
thus lose one solution. How to recover this operator without solving explicitly the system of
partial differential equations remains unanswered, as well as the meaning of this lost solution.
In spite of this incompleteness, the method is still worthy to be applied, since often particular
degeneracies can be solved using less than the required labelling operators [32].

Finally, the contraction method, essentially reducing the obtainment of missing label
operators to the computation of invariants of three Lie algebras, constitutes an appropriate
class of algebras to be tested with the geometrical method based on moving frames, recently
introduced in [33, 34], and tested successfully for large types of algebras. In this frame,
the solving of differential equations is replaced by algebraic systems, which can be often be
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solved in more effective manner. This algorithm can be therefore applied more efficiently
to obtain a maximal number of independent invariants of the three Lie algebras involved
in the MLP. Further, this approach probably allows us to deduce some properties linking
the corresponding automorphism groups of these Lie algebras. Moreover, in the case of non-
reductive subalgebras, the geometric method provides solutions avoiding complex realizations
of the invariants, therefore discarding supplementary complications that usually arise from the
analytical approach. Whether the method can be implemented to compute directly the missing
label operators is a problem that has still to be explored.
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